jueves, 11 de febrero de 2016

El coeficiente de Joule-Thomson

Cuando un fluido pasa por un obstáculo como un tapón poroso, un tubo capilar o una válvula ordinaria, disminuye su presión. La entalpía del fluido permanece aproximadamente constante durante tal proceso de estrangulamiento. Un fluido puede experimentar una reducción considerable de su temperatura debido al estrangulamiento, lo que constituye la base de operación en los refrigeradores y en la mayor parte de los acondicionadores de aire. Sin embargo, esto no siempre sucede. La temperatura del fluido puede permanecer invariable o es posible incluso que aumente durante un proceso de estrangulamiento.


El comportamiento de la temperatura de un fluido durante un proceso de estrangulamiento (h=constante) está descrito por el coeficiente de Joule-Thomson, definido como

El coeficiente de Joule-Thomson es una medida del cambio en la temperatura con la presión durante un proceso de entalpía constante. Observe que si

Durante un proceso de estrangulamiento.

Un examen cuidadoso de la ecuación con la que se define, revela que el coeficiente de Joule-Thomson representa la pendiente de las líneas h = constante en un diagrama T-P. Dichos diagramas pueden construirse con facilidad a partir de mediciones de temperatura y presión durante los procesos de estrangulamiento.
El experimento se repite para tapones porosos de diferentes tamaños, cada uno de ellos con un conjunto diferente de T2 y P2. Al graficar las temperaturas con las presiones se obtiene una línea de h = constante sobre un diagrama T-P, como se muestra en la figura.

Con la repetición del experimento para diferentes conjuntos de presión y temperatura de entrada y graficando los resultados, se construye un diagrama T-P para una sustancia con varias líneas de h = constante, tal como se indica en la figura.

La línea que pasa por estos puntos recibe el nombre de línea de inversión, y la temperatura en un punto donde la línea de entalpía constante interseca la línea de inversión se conoce como temperatura de inversión. La temperatura es la intersección de la línea P = 0 (eje de ordenadas) y la parte superior de la línea de inversión recibe el nombre de temperatura máxima de inversión. Observe que la pendiente de las líneas de h = constante son negativas ( uJT < 0) en estados a la derecha de la línea de inversión, y positivas ( uJT > 0) a la izquierda de ésta.

Se desarrolla una relación general para el coeficiente de Joule-Thomson en términos de los calores específicos, la presión, el volumen y la temperatura. Esto se logra con facilidad modificando la relación generalizada para el cambio de entalpía.

Para un proceso de h = constante tenemos dh = 0. Así, esta ecuación puede reacomodarse para dar

Que es la relación deseada. De este modo, el coeficiente de Joule-Thomson se determina a partir del conocimiento del calor específico a presión constante, y del comportamiento P-v-T de la sustancia. Desde luego, también es posible predecir el calor específico a presión constante de una sustancia utilizando el coeficiente de Joule-Thomson, el cual se determina de una forma relativamente sencilla, con los datos P-v-T de la sustancia 
FUENTE: Cengel, Yunus .A. & Boles, Michael A. (2011). Termodinámica. México: Mcgraw - Hill 

INVESTIGACIÓN
¿Se puede obtener energía a partir de la variación de temperatura?
si se puede obtener y se debe a un fenómeno el dice que "Los dispositivos termoeléctricos se basan en el hecho de que cuando ciertos materiales son calentados, generan un voltaje eléctrico significativo. Por el contrario, cuando se les aplica un voltaje, se vuelven más calientes en un lado, y más fríos en el otro. Los electrones se mueven del extremo caliente del material al extremo frío, creando electrodos positivos y negativos y con ello el voltaje eléctrico. Este efecto, conocido como Peltier–Seebeck, es reversible. Esto no se produce en todos los materiales ya que, por ejemplo, el filamento de las bombillas incandescentes produce calor al aplicarle una diferencia de voltaje (efecto Joule), pero no es un efecto reversible" a esto se le llama efecto termoeléctrico.

FUENTE: Ciencia e Ingeniería, obtenido de:

1 comentario: